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Introduction

This is an incomplete draft on work in progress.
In pure mathematics, it is a common practice to simplify questions about complicated objects by

assigning them more simple objects in a systematic way that faithfully represents some features of interest.
One particular, but still surprisingly broad applicable instantiation of this appraoch, is the assignment
of a sequence of abelian groups, the cohomology groups, to spaces, sheaves and other things. Over the
last century, cohomology was first discovered in concrete examples, then generalized and streamlined –
a process that culminated in the presentation of cohomology groups as the connected components in
mapping spaces in higher toposes.

This is a representation, we can easily and elementary use through the interpretation of homotopy
type theory in higher toposes. In [Cav15] results about cohomology theories like the Mayer-Vietoris-
Sequence were proven and computations were carried out, in [van18] the Serre-Spectral-Sequence was
constructed and used. The latter also introduced cohomology with non-constant coefficients, which are
the right level of generality for the applications we have in mind. We are particularly interested in
computing cohomology groups of sheaves in algebraic geometry, which can be done synthetically using
the foundation laid out by [CCH23] building on work and ideas of Ingo Blechschmidt ([Ble17]), Anders
Kock ([Koc06]) and David Jaz Myers ([Mye19b], [Mye19a]).

In this setup, the basic spaces in algebraic geometry, schemes, are just sets with a particular property
[CCH23][def of scheme], and instead of sheaves on a typeX, we consider, more generally mapsA : X → Ab
to the type of abelian groups. The cohomology groups are then defined as dependent function types with
values in Eilenberg-MacLane-Spaces

Hn(X,A) :≡ ∥(x : X) → K(A(x), n)∥0

– a definition first suggested by [Shu13]. Due to its simplicity, this is very convenient to work with. One
common way to calculate cohomology groups Hn(X,F) is to use results about the cohomology of simple
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subspaces Ui ⊆ X. A computational result on the case with two subspaces U, V ⊆ X is known as the
Mayer-Vietoris-Sequence. In general this sequence helps to calculate the cohomology groups of a pushout
and was constructed for cohomology with constant coefficients in a group in [Cav15]. We generalize this
result to non-constant coefficients (lemma 1.0.12) with a slick proof the second author learned in parts
from Urs Schreiber in the course of his PhD-thesis.

Čech Cohomology, in the sense of this work, is a generalization of the Mayer-Vietoris Sequence in the
case, where U, V are actually subtypes of a set, to a space X which is the union of fintely many subtypes
Ui ⊆ X, i.e.

⋃
i Ui = X. From a synthetic homotopy theory, this is not very interesting, but it is very

interesting for our intended applications in synthetic algebraic geometry. In the latter subhject, it was
unclear for a long time how one could set up a theory of cohomology, since the classical treatment relies
on (non-)constructions, which need the axiom of choice.

In [CCH23] this problem is circumvented, by using a justified axiom which allows a bit of choice which
is related to the topology of the relevant topos and, secondly, as mentioned above, by using higher types
to define work with cohomology.

We present two approaches to a proof of a sufficiently general isomorphism between Čech Cohomology
groups and cohomology groups defined using higher types. The first appraoch is more conceptual, more
general and makes use of the higher types with have available in HoTT. It is also related to how one
would produce a Čech Cohomology theorem in higher category theory: the space is represented as a
colimit, so mapping into the coefficients should yield a limit description of the (untruncated) cohomology
of the whole space.

The second approach very roughly follows old classical treatments of Grothendieck ([Gro57]) and
Buchsbaum ([Buc60]). Inspired by this, we aim to show that both cohomology defined using higher types
and Čech cohomology satisfies the universal property of a universal ∂-functor in some furtunate but still
quite relevant situations. While this approach is far less general, it also seems to need far less involved
calculations.
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with ∂-functors, and, more from the distant past, he thanks Michael Fütterer for presenting the idea of
∂-functors so clearly to him.

1 The Mayer-Vietoris-Sequence

TODO: This needs to be updated and made coherent. It might be good to remove connective spectra
and the connective cover (not sure if they are still needed).

An n-th delooping of a pointed space A which is also (n− 1)-connected is unique and usually written
as BnA or K(A,n) and called an Eilenberg-MacLane space. We will just write An for an n-th delooping.

It is known, that in HoTT, a (0-truncated) abelian group can be delooped arbitrarily often ([LF14]).

Contents of this section are from Mike Shulman’s posts on the HoTT-Blog about cohomology, Floris
van Doorn’s thesis ([van18])[section 5.3] and common knowledge in the field that is not written up, with
the possible exception of the Mayer-Vietoris-Sequence with non-constant coefficients (lemma 1.0.12).

Suppose we have a pointed type A with delooping Ak for any k : N. Then, analogous to the definition
of the k-th homotopy group

πk :≡ ∥ΩkA∥0

one could define homotopy groups of negative degree −k by:

π−k :≡ ∥Ak∥0

Note that these will be trivial for any Eilenberg-MacLane spectrum, since for those, Ak+1 is k-connected
for k : N. In general, spectra with trivial homotopy groups in negative degree are called connective. The
result in this article is concerned with Eilenberg-MacLane spectra.

We will use spectra varying over a space as coefficints for cohomology, which corresponds to the
classical concept of parametrized spectra. We fix our terminology in the following definition.
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Definition 1.0.1 (a) A spectrum is a sequence of pointed types (Ak)k:N, together with pointed equiv-
alences Ak ≃ ΩAk+1.

(b) A spectrum (Ak)k:N is connective, if ∥Ak+1∥0 ≃ 1 for all k : N.

(c) Let X be a type. A parametrized spectrum over X, is a dependent function, which assigns to any
x : X, a spectrum (Ax,k)k:N. For brevity, We will call a parametrized spectrum A ≡ x 7→ (Ax,k)k:N
over X just spectrum over X.

(d) A morphism of spectra A,A′ over X, is given by a sequence of pointed maps fx,k : Ax,k → A′
x,k for

any x : X, such that Ωfx,k+1 = fx,k (using the pointed equivalences).

The connective spectra form a nice “subcategory”: We will need the following (coreflective) construc-
tion that turns a spectrum into a connective spectrum. See ?? for the definition of the k-connected cover
“Dk

Xd”.

Definition 1.0.2 For a spectrum A, the following construction is called the connective cover :

Â :≡ k 7→ Dk−1
A,k

There is also a sequence of pointed maps φk : Âk → Ak, given by the projection from the connected
covers.

The following fact will be useful to us on various occations and can be proven using the uniqueness
of Eilenberg-MacLane spaces:

Lemma 1.0.3 Let X be a type and A : X → Ab a dependent abelian group. If for all 0 < l ≤ n the
type (x : X) → K(Ax, l) is connected, then

((x : X) → K(Ax, n)) = K((x : X) → Ax, n).

Definition 1.0.4 The k-th cohomology group of X with coefficients in A is the following:

Hk(X,A) :≡ ∥(x : X) → Ax,k∥0

(Add a disclaimer: pullback and push forward do not coincide with the classical constructions)

Definition 1.0.5 Let f : Y → X be a map of types and F : X → Ab and G : Y → Ab dependent
abelian groups.
(a) f∗F :≡ (y : Y ) 7→ Ff(y) is called the pullback of F along f .

(b) f∗G :≡ (x : X) 7→ (((y, ) : fibf (x)) → Gy) is called the push-forward of G along f .

Cohomlogy commutes with finite coproducts:

Lemma 1.0.6 Let Yi, i : I :≡ {1, . . . , l} be types and fi : (i : I)× Yi → X and F : ((i : I)× Yi) → Ab.
Then for all n : N

Hn((i : I)× Yi,F) =
⊕
i

Hn(Yi, f
∗
i F).

Proof Direct by currying, using that ∥ ∥0 preserves finite products. □

Cohomology does not change under push-forward along maps with cohomologically trivial fibers:

Lemma 1.0.7 Let f : Y → X and F : Y → Ab be such that H l(fibf (x), π
∗
1F) = 0 for all 0 < l ≤ n,

then
Hn(Y,F) = Hn(X, f∗F).

Proof By direct application of Lemma 1.0.3. □

An important notion in abelian categories, is that of short exact sequences. And it is important to us
here, since for every short exact sequence (somewhere), there should be an induced long exact sequence
on cohomology groups. The cokernel of an exact sequence, corresponds to a cofiber of a map of spectra.

Definition 1.0.8 Let f : A → A′ be a map of spectra.
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(a) The cofiber of f is given by the spectrum

Cf,k :≡ fibfk+1

together with the map c : A′ → Cf , where ck is induced in the following diagram of pullback-squares:

Ak A′
k 1

1 Cf,k Ak+1

1 A′
k+1

fk

(b) The fiber of f is given by the spectrum

fibf,k :≡ fibfk

Note that f : A → A′ is always the fiber of its cofiber and conversely, f : A → A′ is always the cofiber
of its fiber, which is very different from the situation in a general abelian category, where for example
not every map is the kernel of its cokernel.

Definition 1.0.9 A sequence of morphisms of spectra over X

A A′ A′′f g

is a fiber sequence, if the following equivalent statements hold:
(a) fx is the fiber of gx for all x : X

(b) fx,k is the fiber of gx,k for all x : X and k : N
If all spectra involved are Eilenberg-MacLane spectra, we call the sequence exact , and vice versa, if we
speak of a short exact sequence of spectra (overX), we assume all spectra involved are Eilenberg-MacLane
and we have a fiber sequence.

Lemma 1.0.10 If A → A′ → A′′ is a fiber sequence, then the induced square:∏
x:X Ax,k

∏
x:X A′

x,k

1
∏

x:X A′′
x,k

is a pullback square for all k : N.

Proof
∏

maps families of pullback squares to a pullback square. □

This is just tailored to prove the following proposition:

Proposition 1.0.11 For any fiber sequence

A → A′ → A′′

of spectra over X, there is a long exact sequence of cohomology groups:

. . . Hn−1(X,A′′)

Hn(X,A) Hn(X,A′) Hn(X,A′′)

Hn+1(X,A) Hn+1(X,A′) . . .
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Proof Apply homotopy fiber sequence to last proposition for all n : N. □

Lemma 1.0.12 Let F be a spectrum on X and assume we have a pushout square of spaces

S U

V X

f

g h

k

Then we have a Mayer-Vietoris sequence:

. . . Hn−1(S, f∗h∗F)

Hn(X,F) Hn(U, h∗F)⊕Hn(V, k∗F) Hn(S, f∗h∗F)

Hn+1(X,F) . . .

Proof The square ∏
F

∏
h∗F

∏
k∗F

∏
f∗h∗F

is a pullback by [Rij19, Proposition 2.1.6]. This can be transformed to the following pullback square:∏
F

∏
f∗h∗F

∏
k∗F ×

∏
h∗F

∏
f∗h∗F ×

∏
f∗h∗F

∆

×

By [Wel17, Lemma 3.3.6] and the weak group structure on
∏

f∗h∗Ω−nF , we have a pullback square
for each n : N: ∏

f∗h∗Ω−nF 1

(
∏

f∗h∗Ω−nF)× (
∏

f∗h∗Ω−nF)
∏

f∗h∗Ω−nF−

Pasting gives a fiber-square:

(
∏

k∗Ω−nF)× (
∏

h∗Ω−nF)
∏

Ω−nF

(
∏

f∗h∗Ω−nF)× (
∏

f∗h∗Ω−nF)
∏

f∗h∗Ω−nF

∏
f∗h∗Ω−nF 1

−

So we get the desired fiber long exact sequence again by taking the long exact sequence of homotopy
groups. □

2 Čech cohomology

In this section, letX be a type, U1, . . . , Un ⊆ X open subtypes that coverX and F : X → Ab a dependent
abelian group on X. We start by repeating the classical definition of Čhech-Cohomology groups for a
given cover.
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Definition 2.0.1 (a) For open U ⊆ X, we use the notation

F(U) :≡
∏
x:U

Fx.

(b) For s : F(U) and open V ⊆ U we use the notation s :≡ s|V :≡ (x : V ) 7→ sx.

(c) For a selection of indices i1, ..., il : {1, . . . , n}, we use the notation

Ui1...il :≡ Ui1 ∩ · · · ∩ Uil .

(d) For a list of indices i1, . . . , il, let i1, . . . , ît, . . . , il be the same list with the t-th element removed.

(e) For k : Z, the k-th Čech-boundary operator is the homomorphism

∂k :
⊕

i0,...,ik

F(Ui0...ik) →
⊕

i0,...,ik+1

F(Ui0...ik+1
)

given by ∂k(s) :≡ (l0, . . . , lk+1) 7→
∑k

j=0(−1)jsl0,...,l̂j ,...,lk|Ul0,...,lk+1
.

(f) The k-th Čech-Cohomology group for the cover U1, . . . , Un with coefficients in F is

Ȟk({U},F) :≡ ker ∂k/ im(∂k−1).

Definition 2.0.2 Let {U}i:I be a finite collection of open subtypes of X and F : X → Ab. Let
Ikx :≡ (i0, . . . , ik : I) × Ui0...ik(x) for k : N and ik : (x : X) × Ikx → X be the first projection. Then the
dependent abelian group

F̌k :≡ (x : X) 7→ FIk
x

x ≡ ik∗i
k∗F

is called the k-th Čech-sheaf of F .

Remark 2.0.3 (a) The functor
∏

: A → Ab is additive.

(b) Let X be a type covered by {U}i:I and F : X → Ab. Then∏
x:X

F̌k
x =

⊕
i0,...,ik

F(Ui0...ik).

Proof (a) The finite biproducts in A are in particular finite products, which commute with
∏
.

(b) ∏
x:X

F̌k
x =

∏
x:X

FIk
x

x

=
∏
x:X

((i0, . . . , ik : I)× Ui0...ik(x)) → Fx

=
∏
x:X

∏
i0,...,ik:I

FUi0...ik
(x)

x

=
∏

i0,...,ik:I

∏
x:X

FUi0...ik
(x)

x

=
⊕

i0,...,ik

F(Ui0...ik). □

Definition 2.0.4 (a) A cover {U} = U1, . . . , Un is called acyclic for F if for all k : N and i0, . . . , ik,
we have that the higher (non Čech) cohomology groups are trivial:

∀l > 0.H l(Ui0,...,ik ,F) = 0.

(b) A cover {U} = U1, . . . , Un is called Čech-trivializing (Better names welcome!) for F if for all l > 0,
k ≥ 0 and indices io, . . . , in : I we have H1(Ui0...ik ,F) = 0 and H1(Ui0...ik(x),Fx) = 0 for all x : X.
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Theorem 2.0.5
Let X be covered by a finite {U} and let

0 → F → G → H → 0

be a short exact sequence of depedent abelian groups on X. If {U} is Čech-trivializing for F , then a long
exact sequence of Čech-Cohomology groups is induced:

. . . Ȟk−1({U},H)

Ȟk({U},F) Ȟk({U},G) Ȟk({U},H)

Ȟk+1({U},F) . . .

Proof The cover is Čech-trivializing for F , so H1(Ikx ,F) =
⊕

i0,...,ik
H1(Ui0...ik(x),F) = 0. Using the

long exact sequence for Eilenberg-MacLane Cohomology Proposition 1.0.11, this means that for all x : X,
the sequence

0 → FIk
x → GIk

x → HIk
x → 0

is exact, which implies exactness of all sequences:

0 → F̌k → Ǧk → Ȟk → 0.

The cover is Čech-trivializing for F , so using Lemma 1.0.7 and Lemma 1.0.6 we have

H1(X, F̌k) = H1(X, ik∗i
k∗F)

= H1((x : X)× (i0, . . . , ik)× Ui0...ik(x), i
k∗F)

=
⊕
i0...ik

H1(Ui0...ik ,F)

= 0

This implies, by the long exact sequence for non-Čech cohomology, that applying
∏

preserves the exact-
ness. So by Remark 2.0.3, we have short exact sequences:

0 →
⊕

i0,...,ik

F(Ui0...ik) →
⊕

i0,...,ik

G(Ui0...ik) →
⊕

i0,...,ik

H(Ui0...ik) → 0

which assemble to a short exact sequence of chain complexes. By homological algebra, this induces the
desired long exact sequence of the cohomology groups of these complexes. □

A very specific consequence we will need for the proof that Čech cohomology is a universal ∂-functor:

Corollary 2.0.6 Let X have a cover {U} with the same properties as in the theorem with respect to all
F1, . . . ,Fn. Then, all higher Čech-Cohomology groups of

⊕
i Fi vanish, if they vanish for all the Fi.

3 Cohomology of affine schemes

Let R be a fixed commutative ring, serving as a base ring for the definitions from the preprint [CCH23],
we will now import:

Definition 3.0.1 Let A be an R-algebra.
(a) For r : R let

D(r) :≡ r is invertible

be the proposition that r has a multiplicative inverse.

(b) A subtype U : X → Prop of any type X is open, if for all x : X, there merely are r1, . . . , rn such
that U(x) = D(r1) ∨ · · · ∨D(rn).
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(c) The type

SpecA :≡ HomR(A,R)

of R-algebra homomorphisms is called the spectrum of A and there is a correspondence with external
affine spectra in the Zariski-topos.

(d) A scheme is a type X which is covered by finitely many open affine subtypes. These schemes
are expected to correspond to external quasi-compact, quasi-separated schemes, locally of finite
presentation.

Definition 3.0.2 Let M be an R-module. M is weakly quasi-coherent , if the canonical R-linear map

m

rk
7→ (( : r inv) 7→ r−k m

rk
) : Mf → MD(r)

is an isomorphism. We denote the type of weakly quasi-coherent R-modules with R-Modwqc.

Remark 3.0.3 Let M : X → R-Modwqc. Then for any f : X → R there are isomorphisms of RX -
modules

M(D(f)) :≡
∏

x:D(f)

Mx =
∏
x:X

Mf(x) =
∏
x:X

MD(f(x)).

Proof [CCH23][Lemma 7.1.4]. □

Theorem 3.0.4
Let X = Spec(A) be an affine scheme, M : X → R-Modwqc a family of weakly quasi-coherent R-modules,
and n > 0. Then we have

Hn(X;M) = 0.

Proof We induct on n. The base case n = 1 is [CCH23][Theorem 8.3.6]. Thus suppose n ≥ 2 and that
the theorem holds for all 0 < l < n and any X,M .

Let χ : (x : X) → K(Mx, n) represent a cohomology class. We wish to show ∥χ = 0∥, a proposition.
We know that ∥χ(x) = 0∥ for all x, since K(Mx, n) is connected. By Zariski choice, we obtain a covering
X =

⋃
i∈[m] Ui, such that χ(x) = 0 for x ∈ Ui, and such that the proposition x ∈ Ui is standard open for

each x, i. For x : X, let Ix := (i : [m])× (x ∈ Ui). Note that Ix is an affine scheme, since affine schemes
are closed under finite coproducts.

Since χ(x) = 0 when x ∈ Ui, the image of χ(x) under the diagonal map K(Mx, n) → K(Mx, n)
Ix

is zero. This diagonal map can be factored as K(Mx, n) → K(M Ix
x , n) → K(Mx, n)

Ix , where the first
map is induced by the diagonal ∆x : Mx → M Ix

x , and the second is given by the equivalence M Ix
x ≃

Ωn(K(Mx, n)
Ix) ((Cite David’s preprint?)). We claim that χ(x) maps to zero already in K(M Ix

x , n).
To this end, it suffices to show that K(M Ix

x , n) → K(Mx, n)
Ix is an embedding. Since the domain is

connected, it suffices to show that this map becomes an equivalence after applying Ω. So we need to show
that the canonical map K(M Ix

x , n − 1) → K(Mx, n − 1)Ix is an equivalence. It becomes an equivalence
after applying Ωn−1, and the domain is (n−2)-connected, so by Whitehead’s principle it suffices to show
that the codomain is also (n− 2)-connected. Since πj(K(Mx, n− 1)Ix) = Hn−1−j(Ix;Mx), it suffices to
show that H l(Ix;Mx) = 0 for 0 < l ≤ n− 1. This follows from induction hypothesis (using that Ix is an
affine scheme).

From this we can conclude that χ maps to zero in Hn(X;M Ix
x ). Since Ix is merely inhabited, ∆x is

an embedding. Hence we have a short exact sequence 0 → Mx → M Ix
x → coker∆x → 0. This induces

a long exact sequence on cohomology. One part of this long exact sequence is Hn−1(X; coker∆x) →
Hn(X;Mx) → Hn(X;M Ix

x ). By inductive hypothesis, Hn−1(X; coker∆x) = 0 (using that weakly quasi-
coherent modules are closed under cokernels of monomorphisms, finite products, and exponentiation
with standard opens). Hence Hn(X;Mx) embeds in Hn(X;M Ix

x ), so χ must already have been zero in
Hn(X;Mx), as needed. □

One should be able to follow the above reasoning to show also vanishing of H1, provided we know
that H0 is right exact.
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4 Čech cohomology of a join

Definition 4.0.1 The join X ∗ Y of two types X, Y is given by the following pushout.

X × Y Y

X X ∗ Y
⌜

Let n be a natural number and P1, . . . , Pn types. We define the join P1 ∗ · · · ∗ Pn by induction on n,
so that it is empty if n = 0 and P1 ∗ (P2 ∗ · · · ∗ Pn) if n ≥ 1. Our goal is to describe a precise sense in
which this join is built from the products Πi:IPi where I ⊆ [n] ranges over detachable, inhabited subsets.
Note that if Pi are all propositions, then so is the join, with P1 ∗ · · · ∗ Pn = P1 ∨ · · · ∨ Pn.

Definition 4.0.2 We define a sequence J−1 → J0 → J1 → · · · of types. If n = 0, we take Jr = ∅ for all

r. If n > 0, let Ĵr be the sequence obtained recursively from the types P2, . . . , Pn. We take J−1 = ∅ and
for r ≥ 0 define Jr by the following pushout diagram.

P1 × Ĵr−1 P1

Ĵr Jr
⌜

The map Jr → Jr+1 is induced by functoriality of pushouts via the following commutative diagram.

Ĵr−1 P1 × Ĵr−2 P1

Ĵr P1 × Ĵr−1 P1

Lemma 4.0.3 For r ≥ n− 1, the map Jr → Jr+1 is an equivalence and Jr ≃ P1 ∗ · · · ∗ Pn is the join.

Proof Direct by induction on n. □

Definition 4.0.4 For r a natural number, let [n](r) denote the type of r-element subsets of [n], and
define

Zr := (I : [n](r))× (i : I) → Pi.

Lemma 4.0.5 For r ≥ 0, we have a pushout square of the following form.

Zr+1 × Sr−1 Zr+1

Jr−1 Jr
⌜

That is, Jr is obtained from Jr−1 by attaching Zr+1-many r-cells.

Proof We induct on n. For n = 0, Zr+1 is empty and so there is nothing to prove. For r = 0
the conclusion is also clear. Thus suppose n > 0, r > 0 and that the lemma holds for the sequence
P2, . . . , Pn. Consider the following 3-by-3-diagram, with the pushouts of the rows and columns listed at
the bottom and to the right.

P1 P1 × Ẑr P1 × Ẑr P1

P1 × Ĵr−2 P1 × Ẑr × Sr−2 P1 × Ẑr P1 × Ĵr−1

Ĵr−1 Ẑr+1 × Sr−1 + P1 × Ẑr Ẑr+1 + P1 × Ẑr Ĵr

Jr−1 Zr+1 × Sr−1 Zr+1 Jr
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The maps in this diagram are all guessable, and the commutativity of each of the four squares is direct.
We explain how to compute the pushout of each row and column. The pushout of the first row is P1,
since the pushout of any equivalence is an equivalence. The pushout of the second row is P1 × Ĵr−1, by

inductive hypothesis and using that P1×− preserves pushouts. The pushout of the third row is Ĵr, again
using inductive hypothesis as well as the observation that the P1 × Ẑr-terms do not affect the pushout.

The pushout of the first column is Jr−1 by definition. To compute the pushout of the second column,

we observe that the Ẑr+1 ×Sr−1-term does not interact with the rest of the column, that the suspension

of Sr−2 is Sr−1, and that P1 × Ẑr ×− preserves pushouts. All together, this shows that the pushout is
Ẑr+1 ×Sr−1 +P1 × Ẑr ×Sr−1, i.e. (Ẑr+1 +P1 × Ẑr)×Sr−1, i.e. Zr+1 ×Sr−1. Finally, the third pushout

is Ẑr+1 + P1 × Ẑr since the pushout of an equivalence is an equivalence, i.e. Zr+1.

The 3 × 3-lemma tells us that the the pushout of row-wise pushouts is equivalent to the pushout of
column-wise pushouts. That is, Jr is a pushout of the desired form. (Here one should be careful to check
that the maps are the ones we expect.) □

Now let X be a type, n a natural number, and Pi a type family over X for each i : [n]. For any x : X,
P1(x), . . . , Pn(x) is simply a list of types, to which we may apply Lemma 4.0.5. Taking sigma over x : X
preserves pushouts (since it is a left adjoint), so we obtain the following pushout square for each r ≥ 0.

(x : X)× Zr+1(x)× Sr−1 (x : X)× Zr+1(x)

(x : X)× Jr−1(x) (x : X)× Jr(x)
⌜

(1)

We could now use Mayer–Vietoris, but instead let us consider the following lemma which explains
how to compute the cohomology of such a pushout. It is in the spirit of cellular cohomology.

Lemma 4.0.6 Let n ≥ 0 a natural number, and suppose given the following pushout square.

I × Sn I

C C ′⌜

Then for any parametrised spectrum A over C ′ we have the following fibre sequence of spectra, where
AC denotes the cohomology spectrum of C with coefficients in A:

AC′
→ AC → ΩnAI .

Proof By the universal property of A−, it turns colimits into limits, so we have the following pullback
square in spectra.

AC′
AI

AC AI×Sn

⌟

We compute the bottom-right term:

AI×Sn

≃ (ASn

)I ≃ (A⊕ ΩnA)I ≃ AI ⊕ ΩnAI ,

using that (Sn → B) ≃ B × ΩnB for any homogeneous pointed type B. Here ⊕ denotes biproduct of
spectra. It can be seen that the map AI → AI×Sn

corresponds to the left inclusion into this direct sum.
We can then paste this pullback diagram with

AI 0

AI ⊕ ΩnA ΩnAI

⌟

to get the desired fibre sequence. □
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Now suppose M is a family of abelian groups over X, and we are interested in cohomology with
coefficients in M . Note that (x : X)×Zr+1 is a finite coproduct, and cohomology is additive in those, so
we have

H l((x : X)× Zr+1(x)) ∼=
⊕

I:[n](r+1)

H l((x : X)× (i : I) → Pi(x)).

Let us write Cr+1 for this group in the case where l = 0.

Lemma 4.0.7 If Pi is acyclic with regard to M in the sense that H l((x : X)× (i : I) → Pi(x)) = 0 for
l > 0 and any r ≥ 1, I : [n](r), then we have the following description of H l

r := H l((x : X)× Jr(x)):

H l
r
∼= H l

r−1

for l < r − 1 (where the map is induced by the map Jr−1(x) → Jr(x)),

Hr−1
r

∼= ker δ

and
Hr

r
∼= coker δ

where δ : Hr−1
r−1 → Cr+1 is induced by the attaching map Zr+1(x)× Sr−1 → Jr(x), and

H l
r
∼= 0

for l > r.

Proof We induct on r. For r = −1 there is nothing to prove. For r ≥ 0 we start with the pushout
square (1). To this we apply Lemma 4.0.6, obtaining a fibre sequence of cohomology spectra. Consider
the associated long exact sequence on homotopy groups. By assumption, one of the spectra in our fibre
sequence has its cohomology concentrated in degree r−1, where it is Cr+1, leading to the desired result.□

From Lemma 4.0.7, we have that Hr
r is a quotient of Cr+1 for all r. In particular, the map δ : Hr−1

r−1 →
Cr+1 appearing in the statement of Lemma 4.0.7 composes with the quotient map to give a map Cr →
Cr+1. We expect this map to be the usual boundary map appearing in the Čech complex. Modulo this
gap, we arrive at our main result.

Theorem 4.0.8
For any P1, . . . , Pn which are acyclic with regard to M , the cohomology groups

H l((x : X)× P1(x) ∗ · · · ∗ Pn(x);M)

of the fibrewise join with coefficients in M agree with the cohomology of the Čech complex, i.e. the kernel
of the boundary map Cl+1 → Cl+2 modulo the image of the boundary map Cl → Cl+1.

Proof Combining Lemmas 4.0.3 and 4.0.7. (Modulo the gap about describing the boundary map Cr →
Cr+1.) □

Note that if Pi(x) are propositions, then the fibrewise join is simply the union of subtypes, and the types
(x : X)× (i : I) → Pi(x) appearing in the Čech complex are simply intersections of subtypes.

5 ∂-Functors

Cohomology has the universal property of being a universal ∂-functor . In this section, we will construct
a tool for proving this in some particular situations, both for the cohomology defined using Eilenberg-
MacLane spaces and Čech cohomology.

The following definition, from ([Gro, p. 2.1]) and originally from ([Gro57]), is specialized to our needs.
Grothendieck makes a definition for additive functors from an abelian category to a preadditive category.
We will only need the theory for functors from certain subcategories of dependent R-modules over a fixed
type to abelian groups. Also, some arguments are a lot more convenient when we can use elements of
modules instead of abstract categorical language. Therefore, we will state our definitions and results only
for this particular situation.

Let R be a fixed commutative ring and A be a subcategory of the category of dependent R-modules
over a fixed type X, which is closed under finite direct sums.
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Definition 5.0.1 An (l-truncated) ∂-functor is a collection of additve1 functors T i : A → Ab, where
0 ≤ i < l with l ∈ N ∪ {∞}, together with a collection of connecting morphisms ∂S,i for any short exact
sequence S and 0 ≤ i ≤ l, subject to the following conditions:
(a) Let S be a short exact sequence

0 → A′ → A → A′′ → 0

in A. Applying the T i yields a complex, together with connecting morphisms (∂S,i)0≤i<l−1:

0 T 0(A′) T 0(A) T 0(A′′) T 1(A′) T 1(A) . . .
∂S,0

(b) For any homomorphism to a second short exact sequence

0 → B′ → B → B′′ → 0

and any i < l − 1 the corresponding square commutes:

T i(A′′) T i+1(A′)

T i(B′′) T i+1(B′)

∂

∂

Definition 5.0.2 Let l, k : N. The l-th truncation of a (l+k)-truncated ∂-functor T is just the restriction
of (T i)i<l+k to (T i)i<l, together with a restriction of the ∂-maps and we denote the l-th truncation with
T≤l.

Definition 5.0.3 Let T and T ′ be ∂-functors defined for the same indices.
A morphism of ∂-functors f : T → T ′ is given by a natural transformation f i : T i → T ′i for each

valid i, such that for any short exact sequence

0 → A′ → A → A′′ → 0

the following square commutes:

T i(A′′) T i+1(A′)

T ′i(A′′) T ′i+1(A′)

∂

fi
A′′ fi+1

A′

∂

Definition 5.0.4 A ∂-functor T is called exact , if all values are exact complexes.

Definition 5.0.5 A ∂-functor T is called universal , if for any T ′, defined for the same indices, any
natural transformation f0 : T 0 → T ′0 extends uniquely to a morphism of ∂-functors f : T → T ′.

To prove that some ∂-functor has this universal property, we will extend morphisms of ∂-functors,
level by level. By observing the diagram in the proof of the lemma below, one can see that this is possible
using exact sequences with the property, that some particular element is zero in their middle term. This
property will appear often enough to deserve a name:

Definition 5.0.6 Let T be a ∂-functor, i a valid index, A : A and χ : T i(A). We say that a short exact
sequence S = A → R → S resolves χ, if χ is mapped to zero in T i(R).

In the classical approach with injective resolutions, for a fixed A : A all elements of T i(A) for all i > 0
would be resolved. For our examples, where we can resolve elements of Hi(X,A), we will only be able to
merely resolve one χ : Hi(X,A) at a time. So resolving all elements at once with the same construction,
would require some form of choice.

We will now show, how a short exact sequence resolving an element might be of use to extend
morphisms of ∂-functors.

1The zero object and binary direct sums are preserved.
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Lemma 5.0.7 Let l ≥ i > 0 and T be an exact, l-truncated ∂-functor, S = A → Rχ → Sχ a short exact
sequence in A and χ : T i(A)

A Rχ Sχ
rχ sχ

that resolves χ, i.e. such that T i(rχ)(χ) = 0. For an l-truncated ∂-functor T ′ and any morphism of
(i− 1)-truncated ∂-functors f : T≤(i−1) → T ′≤(i−1), there is a unique

ext(f, χ,S) : T ′i(A)

such that for any x : T i−1(Sχ) with ∂T,S,i−1(x) = |χ| we have ∂T,S,i−1(f
i−1(x)) = ext(f, χ,S).

Proof The following diagram commutes:

T i−1(A) T i−1(Rχ) T i−1(Sχ) T i(A) T i(Rχ) . . .

T ′i−1(A) T ′i−1(Rχ) T ′i−1(Sχ) T ′i(A) T ′i(Rχ) . . .

fi−1 fi−1

∂

fi−1

r∗χ

s∗χ ∂

The upper row is exact and the lower row is a complex.
Let E(χ,S) be the type of all possible values of f i in T ′i(A), with which the dependent sum over all

y : T ′i(A) such that there merely is x : T i−1(Sχ) with ∂(x) = |χ| and ∂(f i−1(x)) = y. Then E(χ,S) is
inhabited, since rχ(|χ|) = 0 and by exactness, there has to be a mere preimage under ∂. So we need to
show, that E(χ,S) is a proposition.

Let x : T i−1(Sχ) such that ∂(x) = |χ|. Then any other element with this property will be of the form
x+ k, with k in the kernel of ∂. Any k like that, has a mere preimage k′ : T i−1(Rχ) and since the lower
row is a complex, we have ∂(s∗χ(f

i−1(k′))) = 0.

So for any extension y : T ′i(A) we have

y = ∂(f i−1(x+ k))

= ∂(f i−1(x)) + ∂(f i−1(k))

= ∂(f i−1(x)) + ∂(s∗χ(f
i−1(k′)))

= ∂(f i−1(x))

This means we can define ext(f, χ,S) to be the unique element of E(χ,S). □

While this shows, that existence of these special short exact sequences is enough to extend a map
from one truncation level to the next, it is not clear, that an extension constructed in this way, is actually
a morphism of truncated ∂-functors.

It is also unclear, if the construction even yields a well-defined map, independent of the short exact
sequence we chose in the construction. A solution to these problems is essentially given by requiring some
“functoriality” of the short exact sequences we will use (definition 5.0.9) and the following naturality
result:

Lemma 5.0.8 Let T be an exact ∂-functor. Let χ : T i(A) and

A Rχ Sχ

A′ Rφ(χ) Sφ(χ)

rχ

φ φR φS

be a morphism of short exact sequences Sχ and Sφ(χ) in A, where T i(rχ)(χ) = 0. Then, for the
construction from lemma 5.0.7, we have the following commutativity:

T i(φ)(ext(f, χ,Sχ)) = ext(f, φ(χ),Sφ(χ))

Proof (of lemma 5.0.8) Let T ′ be another ∂-functor and f : T≤i−1 → T ′≤i−1. Apply the ∂-Functors
T and T ′ to the morphism of short exact sequences, to get the following diagram:
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T i−1(Rχ) T i−1(Sχ) T i(A) T i(Rχ) . . .

T i−1(Rφ(χ)) T i−1(Sφ(χ)) T i(A′) T i(Rφ(χ)) . . .

T ′i−1(Rχ) T ′i−1(Sχ) T ′i(A) T ′i(Rχ) . . .

T ′i−1(Rφ(χ)) T ′i−1(Sφ(χ)) T ′i(A′) T ′i(Rφ(χ)) . . .

a χ 0

a′ φ(χ) 0

b ext(χ,Rχ)

b′ ?

fi−1

fi−1

φ∗

fi−1 fi−1

T ′i(φ)

From exactness of the upper sequence, we get that there is a preimage a of χ. Let a′ denote the image
of a in T i−1(Sφ(χ)), then a′ will be a preimage of φ(χ) in the parallel sequence by commutativity. That
means, that b′, the image of a′ in the lower sequence, will be mapped to ext(f, φ(χ),Sφ(χ)), but by
commutativity, ext(f, χ,Sχ) will be mapped to the same thing by T i(φ). So:

T i(φ)(ext(f, χ,Sχ)) = ext(f, φ(χ),Sφ(χ)) □

We summarize the exact condition we found useful to prove universality of ∂-functors, together with
the existence of enough “good” short exact sequences in the following definition.

(The following is about to be replaced with a more specialized but easier notion, focusing on trivializing
covers instead of resolving sequences. One good thing about asking for trivializing covers should be that
the big diagram below will only appear in one proof instead of a couple of places.)

Definition 5.0.9 Let T be a ∂-functor. We say that A has local resolutions for T , if
(i) For any i > 0, A : A and χ : T i(A) there merely is a short exact sequence:

0 A Mχ Cχ 0
mχ

resolving χ, i.e. such that T i(mχ)(χ) = 0.

(ii) For any short exact sequence S = A → R → S resolving χ and any morphism φ : A → B, there is
a zig–zag of short exact sequences resolving χ or, respectively φ(χ), of the following shape:

A R S

A R1 S1

...
...

...

A Rl Sl

B Mφ,S Cφ,S

B Mφ(χ) Cφ(χ)

φ

mφ(χ)
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The following is provable by a constructive adaption of Prop 2.2.1 in [Gro]:

Theorem 5.0.10
Let X be a type. An exact ∂-functor (T i)i<l from A to Ab is universal, if A has local resolutions for T .

Proof (of theorem 5.0.10) To extend a given morphism f0, we will construct f i : T i → T ′i by induc-
tion on i for 0 < i < l. So let T ′ be a ∂-functor and assume, we already have a morphism for i − 1 and
lower indices. We start by constructing a group homomorphism f i : T i(A) → T ′i(A) for arbitrary A : A.

By lemma 5.0.7, we merely get f i(χ) :≡ ext(f, χ,Sχ), for each χ : T i(A) and their merely given local
resolutions Sχ. To see that this yields an actual map, we have to check that the values ext(f, χ,Sχ) are
independent of the short exact sequence Sχ. For any other short exact sequence S ′ = A → Rχ → Sχ

that resolves χ, we get a zig-zag by our requirement on local resolutions:

A Rχ Sχ

A R1 S1

...
...

...

A Rl Sl

A Mid,S′ Cid,S′

A Mχ Cχ

id

mχ

Applying lemma 5.0.8 to any of these morphisms S → S ′ of exact sequences gives us:

ext(f, χ,S) = T i(id)(ext(f, χ,S ′)) = ext(f, χ,S ′)

So we have a well-defined map f i : T i(A) → T ′i(A). We will show that it is a homomorphism of
groups. First, note that f i(0) = 0, because 0 has the identity as a local resolution, i.e. the sequence
0 → A → A → 0 → 0.

Now let ξ, χ, ξ + χ : T i(A). We need to show that f i(ξ) + f i(χ) = f i(ξ + χ). By additivity of the T i,
we can “resolve” these three elements at once, applying our construction to (ξ, χ, ξ+χ) : T i(A⊕A⊕A).
Again by lemma 5.0.8 using the inclusions A → A⊕A⊕A, we get f i(ξ, χ, ξ+χ) = (f i(ξ), f i(χ), f i(ξ+χ)).
By using lemma 5.0.8 on the map a :≡ (x, y, z) 7→ x+ y − z : A⊕A⊕A → A, we get:

f i(ξ) + f i(χ)− f i(ξ + χ) = T i(a)((f i(ξ), f i(χ), f i(ξ + χ)))

= f i(a(ξ, χ, ξ + χ))

= f i(0)

= 0.

This shows that f i is as homomorphism.

Let S = A → B → C be an arbitrary exact sequence. To see that f i commutes with the connecting
morphism ∂S,i−1, let x : T i−1(C) and χ be the image of x in T i(A). By exactness, χ will be mapped to
0 in T i(B), so S resolves χ and therefore, the desired commutativity follows from the well-definedness
proof for f i.

The only thing left to show is that f i is a natural transformation T i → T ′i. Let φ : A → B and
χ : T i(A). By our definition of local resolutions, there is a zig-zag:
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A Rχ Sχ

A R1 S1

...
...

...

A Rl Sl

B Mφ,S′ Cφ,S′

B Mφ(χ) Cφ(χ)

φ

mφ(χ)

and therefore by applying lemma 5.0.8 to the but last rectangle:

T i(φ)(f i(χ)) = T i(φ)(ext(f, χ,Sl))

= ext(f, φ(χ),M)

= f i(φ(χ)). □

6 Construction of local resolutions

(META: This section is somewhat incomplete, but expected to work out with high level of confidence.)

6.1 General local resolutions

(TODO: For the vanishing result and join-based chech cohomology, we also use what is explained below.
That should somehow be consolidated/brought into the right order.)

Among 1-truncated ∂-functors, H0, H1, i.e. the zeroth and first cohomology groups defined in terms of
Eilenberg-MacLane spaces, will always be universal. We will show this, by constructing local resolutions
for (H0, H1) in the sense of definition 5.0.9. The construction will follow a general pattern, which we will
also use in the following sections for all other resolutions. What follows, is an explanation in more classical
terms – a reader not familiar with those, can safely skip that explanation, since the construction we use,
will be quite simple and can be understood without the classical notions of torsors or fibre bundles.

Let X be a type and A : X → Ab. An element χ : H1(X,A) can be merely represented by a map
T : (x : X) → K(Ax, 1). If we use the particular implementation of the deloopings K(Ax, 1) as Ax-
torsors, Tx will be a set with an action and it is natural to view T as a bundle over X. Let us relax the
usual notion of fibre bundle a bit, to also admit the case of our A-torsors, i.e. let the following be the
type of A-fibre bundles over X: ∑

T :X→U
∥Tx = Ax∥

Then, A-torsors will in particular also be A-fibre bundles.
A canonical trivialization for fibre bundles with constant prescribed fiber is given in ([Che22])[Definition

4.9, Definition 4.11] – but this works for the more general notion as well. The canonical trivialization is
given by

VT :≡
∑
x:X

Tx = Ax

Then, from the definition above, we get that π1 : VT → X is surjective and the second projection will
give a trivialization witness for the pullback of T along π1.

Now, since the local resolution has to be something over X, we have to push-forward the construction
above. But that really just means we have to take a dependent product instead of a sum. So the resulting
dependent group is just:

x 7→ A(Tx=∗)
x : X → Ab
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The canonical map Ax → A
(Tx=∗)
x maps an element ax : Ax to the function p 7→ ax. Since Tx = ∗, this

map will be an embedding.
For a more general T : (x : X) → K(Ax, l), the type ∥Tx = ∗∥0 will be trivial if l > 1 and therefore

Ax → A
(Tx=∗)
x will be an equivalence, since Ax is 0-truncated. This means the same construction will not

work for cohomology groups above degree 1, with coefficients in Eilenberg-MacLane spaces. Another way
to phrase the problem is, that the spectrum K(Ax, )(Tx=∗) fails to be an Eilenberg-MacLane spectrum.
This happens, if and only if, Tx = ∗ has non-trivial cohomology. So one thing we can use to resolve higher
cohomology classes, are covers of X with cohomologically trivial fibers, which we will do in the next
section. Now we will show, how we can use the general construction for degree 1 to get all requirements
of definition 5.0.9:

Lemma 6.1.1 Let A : X → Ab and χ : H1(X,A). Then there merely is a short exact sequence Sχ:

0 A Mχ Cχ 0
mχ

such that for any other short exact sequence S = A → R → S such that χ is mapped to zero in H1(X,R)
and any morphism f : A → B we have a zig-zag:

A R S

B Mf,S Cf,S

B Mf(χ) Cf(χ)

f

mf(χ)

Proof As explained above, we merely have T : (x : X) → K(Ax, 1) with |T |0 = χ and the definition

Mχ :≡ ((x : X) 7→ A
(Tx=∗)
x together with the diagonal map (a 7→ (x, p 7→ ax)) : A → Mχ, gives a

monomorphism A → Mχ. So we can take the cokernel, to a short exact sequence as required. m∗
χ(χ) is

zero by x 7→ id(Tx=∗) : (x : X) → Tx = ∗. Note that this construction is well-defined in the sense that for
another T ′ with |T ′| = χ, we merely have ∥T = T ′∥ and therefire an isomorphism between the resulting
sequences.

Now, let S = A → R → S be a short exact sequence such that χ is mapped to zero in H1(X,R) and
φ : A → B any morphism. For T : (x : X) → K(Ax, 1) with |T | = χ and T ′ :≡ (x 7→ K(φx, 1)(Tx)) a
zig-zag can be constructed, whose maps we will describe below the diagram:

A R S

A (x 7→ RTx=∗
x ) coker(φ∆)

A (x 7→ ATx=∗
x ) coker(∆)

B (x 7→ BTx=∗
x ) coker(∆′)

B (x 7→ B
T ′
x=∗

x ) coker(∆′′)

∆

φ∆

∆

φ

∆′

∆′′

The maps in the middle column are all given by postcomposition with given maps, except for the last
map, which is given by precomposition with a map Tx = ∗ → T ′

x = ∗ given by using the pointed map
K(φx, 1). All maps in the right column, are then induced by the universal property of cokernels. As
noted above, the last row is isomorphic to any Sχ, so the zig-zag does indeed satisfy the specification
from definition 5.0.9. □

Theorem 6.1.2
H≤1 is a 1-truncated, universal ∂-functor.

Proof By lemma 6.1.1 we have local resolutions for H≤1, we can apply theorem 5.0.10. □

17



6.2 Local resolutions for schemes

Definition 6.2.1 Let X,Y be schemes.
(a) For M : Y → R-Mod and f : X → Y let f∗M :≡ (x : X) 7→ Mf(x).

(b) For M : X → R-Mod and f : X → Y let f∗M :≡ (y : Y ) 7→
∏

x:fibf (y)
Mπ1(x).

Both operations preserve weakly quasi-coherent modules by [CCH23][Theorem 9.1.11]. As defined in
[CCH23], a scheme is a type X, such that there merely is an open cover by affine schemes Ui = SpecAi.
As shown in theorem 3.0.4, higher cohomology with coefficients in weakly quasi-coherent modules is
trivial on affine schemes. So we know that, for a general scheme, cohomology will be locally trivial. A
separated scheme, is defined in [CCH23], as a scheme where equality of points is a closed proposition –
we will not explain that here and only mention that examples include projective and affine schemes. The
consequence of relevance here, is that for a separated scheme, intersections of affine opens are affine. This
means the open affines form an acyclic cover:

Remark 6.2.2 For a separated scheme X and M : X → R-Modwqc, any open affine cover (Ui)i:I is
acyclic, i.e2.

Hk(Ui0···l ,M) = 0 ∀l > 0, k > 0 and i0, . . . , il : I.

We will use these covers in a way similar to the last section. For a cover (Ui)i:I , we can view as a map
from the coproduct u :

∐
i Ui → X. Then pullback along u trivializes all higher cohomology of X with

values in M : X → R-Modwqc and we can take the push-forward again to get a candidate for a sequence
that resolves higher cohomology classes.

Remark 6.2.3 For a separated scheme X and M : X → R-Modwqc. Then, for any finite affine open
cover (Ui)i:I , x : X and u :

∐
i Ui → X, the R-linear map of weakly quasi-coherent R-modules

∆ :≡ mx 7→ ( 7→ mx) : Mx → Mfibu(x)
x

is an embedding and resolves any χ : Hk(X,M) with k > 0.

Proof (Ui)i:I is a cover, so fibu(x) is inhabited and therefore ∆ is an embedding. For the resolving-
property, we will use that fibu(x) is affine. To see that, we compute the fiber as an iterated pullback,
starting with an inclusion ιi : Ui → X such that Ui(x):

fibu(x)
∐

j Ui ∩ Uj

∐
i Ui

1 Ui X

u

The right pullback,
∐

j Ui ∩ Uj , is affine, since it is a finite coproduct of the affine schemes Ui ∩ Uj . The
left square is a pullback by pasting, and as a pullback of affine schemes, fibu(x) is affine.

So we know that for any k > 0, Hk(fibu(x),Mx) = 0. Equivalently, the latter means fibu(x) →
K(Mx, k) is connected. By the uniqueness of connected deloopings, this means that

K(Mx, k)
fibu(x) = K(Mfibu(x)

x , k).

And connectedness of the latter means that all higher cohomology classes are resolved. □

Theorem 6.2.4
For a separated scheme X and M : X → R-Modwqc. Then the Hk, for k ∈ N form a universal ∂-functor
with domain X → R-Modwqc.

Proof The resolving sequences can be constructed from the monomorphism in remark 6.2.3 by taking
cokernels, which are proven to be weakly quasi-coherent in [CCH23]. The second property of local
resolutions can be proven analogous to the last section. □

6.3 Local resolutions for Čech-Cohomology

Let X be a fixed set and {U} = (U0, . . . , Un) a fixed cover of X. If {U} is acyclic, then the Čech
Cohomology of weakly quasi-coherent modules on X will be a universal ∂-functor.

The local resolutions can be constructed using the Čech-sheaf construction.

2Using notation from definition 2.0.1
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7 Serre’s criterion for affineness

(Give some context, i.e. important theorem in the foundations of algebraic geometry, useful for X, Y, Z,
...)

(Discuss slight apparent mismatch to classical version regarding finiteness hypotheses)
(Discuss relative version)
The following observation is classically a fundamental result on quasi-compact and quasi-separated

schemes.

Lemma 7.0.1 Let X be a scheme. Let global functions f1, . . . , fn : X → R be given such that all
the open subschemes D(fi) are affine and such that X = D(f1) ∪ . . . ∪ D(fn). Then the canonical
map X → Spec(RX) is an open immersion. If furthermore the functions fi generate the unit ideal in the
ring RX , this map is bijective.

Proof The classical proof, for instance as collected in the Stacks Project [stacks][Tag 01QF], carries
over to our setting. We spell out some details.

We first show that the canonical map is injective, hence let p, q : X be such that f(p) = f(q) for
all f ∈ RX . Because the D(fi) cover X, one of the numbers fi(p) is invertible. Hence p and q belong
to the same open D(fi). Because D(fi) is affine by assumption, we only need to verify that g(p) = g(q)
for all g ∈ RD(fi) in order to conclude that p = q. This follows from the fact RD(fi) = (RX)[f−1

i ], whose
classical proof (as for instance reproduced in [liu][Proposition 2.3.12]) just uses a bit of homological
algebra and carries over to our setting verbatim.

One can check that the image of the canonical map is DX′(f1) ∪ · · · ∪DX′(fn), where DX′(fi) refers
to the standard open of X ′ := Spec(RX) associated to fi : RX . From this observation the remaining
claims follows. □

(Decide on notation for constant bundle)

Lemma 7.0.2 Let X be a scheme. Assume that H1(X,E) = 0 for all wqc bundles of ideals E on X.
Let X = U ∪ V be an open covering with U affine. Then there merely is a function f : X → R such
that D(f) ⊆ U and such that X = D(f) ∪ V .

Proof As with any open subset of an affine scheme, the open subset U ∩ V of U is the complement of
some closed subset K ⊆ U : If U ∩ V = D(g1) ∪ · · · ∪D(gm) for some functions g1, . . . , gm : U → R, we
may set K = V (g1, . . . , gm); then U ∩ V = U \K. Let i : K → X be the inclusion map.

Let J be the subbundle of the constant bundle R with fibers Jx = {a : R | a ∈ R× ⇒ x ∈ U}. Global
sections of J are global functions f : X → R such that D(f) ⊆ U . The bundle J is wqc by ??.

The fibers of the pushforward bundle i∗R have the explicit description (i∗R)x = RJx∈KK; a global
section of this bundle is a global function K → R.

We have a canonical morphism φ : J → i∗R, given on fibers by mapping a number a : Jx to the
constant map with value a. This morphism is surjective on fibers: Let x : X. Then x ∈ U or x ∈ V . In
the latter case, we have x ̸∈ K so RJx∈KK = 0. In the former case, RJx∈KK is a quotient of R because the
truth value of x ∈ K is closed (if x ∈ K ⇔ a1 = . . . = am = 0, then RJx∈KK = R/(a1, . . . , am)) and φx is
the canonical surjective quotient map.

Because the first cohomology of the kernel of φ vanishes, the morphism φ is also surjective on global
sections. In particular, the global function 1 : K → R has a preimage f . By construction of J , we
have D(f) ⊆ U .

It remains to prove X = D(f) ∪ V . Let x : X. Then x ∈ U or x ∈ V . In the latter case, we
trivially have x ∈ D(f) ∪ V . In the former case, writing x ∈ V ⇔ a1 = . . . = am = 0 again, we
have ¬(f(x) = 0∧ a1 = 0∧ · · · ∧ am = 0 by U ∩ V = U \K. By the generalized field property, one of the
numbers f(x), a1, . . . , am is invertible, so x ∈ D(f) or x ∈ V . □

Proposition 7.0.3 Let X be a scheme. If H1(X,E) = 0 for all wqc bundles of ideals E on X, then
there exist global functions as in lemma 7.0.1.

Proof Because X is a scheme, there is a finite open affine covering X = U1 ∪ · · · ∪ Un. By apply-
ing lemma 7.0.2 to the binary coverings U1 ∪ (U2 ∪ · · · ∪Un), U2 ∪ (U1 ∪U3 ∪ . . .∪Un) and so on, we may
assume that each open Ui is of the form Ui = D(fi) for some global function fi : X → R.

Because X = U1 ∪ · · · ∪Un, for every point x : X we trivially have that the numbers f1(x), . . . , fn(x)
generate the unit ideal in R. In other words, the bundle morphism Rn → R given by the matrix (f1 · · · fn)
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is surjective at each fiber. The functions f1, . . . , fn generate the unit ideal in RX iff this morphism is also
surjective on global sections. Hence we need to verify that its kernel has vanishing first cohomology.

If the assumption would have been that all wqc bundles of modules have vanishing first cohomology,
this task would be trivial. However, the kernel K is a subbundle of Rn and hence not a bundle of ideals
of R. But K is filtered by its subbundles Kj = ({(a1, . . . , an) : Kx | ai = 0 for i > j})x:X for j = 0, . . . , n,
and each quotient Kj+1/Kj has vanishing first cohomology as it is isomorphic to a wqc bundle of ideals
of R (by projecting to the j-th coordinate). □

Theorem 7.0.4
Let X be a scheme. If H1(X,E) = 0 for all wqc bundles of ideals E on X, then X is affine.

Proof Immediate from proposition 7.0.3 and lemma 7.0.1. □

8 Application: Cohomology of Serre’s twisting sheaves

Following [Har77][Theorem 5.1, Chapter III] we can apply Čech cohomology to compute the cohomology
of Serre’s twisting sheaves on Pn.

Definition 8.0.1 The ring R[X0, . . . , Xn] as well as its localizations by monomials are graded rings,
where the degree d : Z elements are homogenous rational functions of degree d. We denote the R-module
of degree d elements of R[X0, . . . , Xn]Xi0 ...Xip

by(
R[X0, . . . , Xn]Xi0

...Xip

)
d
.

Theorem 8.0.2
(i) For n : N, d : Z, there is an isomorphism R[X0, . . . , Xn]d → H0(Pn,O(d)) of R-modules.

(ii) Hn(Pn,O(−n− 1)) = R is free of rank 1 and Hn(Pn,O(d)) = 0 for d > −n− 1.

(iii) The canonical map given by tensoring

H0(Pn,O(d))×Hn(Pn,O(−d− n− 1)) → R

is a perfect pairing of finite free R-modules for all d : Z.

(iv) Hi(Pn,O(d)) = 0, 0 < i < n, d : Z.

Proof We cover Pn by the affine open subschemes Ui :≡ D(Xi). More generally, we use the shorthand
Ui0...ip :≡ D(Xi0 . . . Xip) and note

O(d)(Ui0...ip) =
(
R[X0, . . . , Xn]Xi0 ...Xip

)
d
.

The Čech complex for this covering is∏
i0

(
R[X0, . . . , Xn]Xi0

)
d
→
∏
i0,i1

(
R[X0, . . . , Xn]Xi0

Xi1

)
d
→ · · · → (R[X0, . . . , Xn]X0...Xn)d .

(i) H0(Pn,O(d)) is the kernel of the first map in the Čech complex, so it consists of all families

C =

(
Pi

X li
i

)
i:{0,...,n}

of degree d elements such that X li
i Pj = X

lj
j Pi by regularity of Xk, k = 0, . . . , n. Again by regularity

and using this equation, Pi is divisible by X li
i , so C was a family with values in R[X0, . . . , Xn]d.

(ii) Hn(Pn,O(d)) is the cokernel of the map∏
i

(
R[X0, . . . , Xn]X0...X̂i...Xn

)
d
→ (R[X0, . . . , Xn]X0...Xn)d .

The image of this map is freely generated by all degree d monomials X l0
0 . . . X ln

n where li ≥ 0 for
some i. This means the cokernel is generated by all degree d monomials X l0

0 . . . X ln
n with li < 0 for

all i. For d = −n−1 the only possibility is li = −1 for all i, so Hn(Pn,O(−n−1)) is freely generated
by this monomial. For larger d, there is no such monomial and we have Hn(Pn,O(d)) = 0.
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(iii) For d < 0, this is trivial by (a) and (b), so let d ≥ 0. The pairing is given by multiplication of
degree d with degree −d− n− 1 monomials:

(X l0
0 . . . X ln

n ) · (Xm0
0 . . . Xmn

n ) = X l0+m0
0 . . . X ln+mn

n

where the right hand side is zero whenever there is i such that li +mi ≥ 0.

TODO: Finish, say why it is a perfect pairing and maybe what that means

(iv) TODO □
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Čech-trivializing, 6

acyclic, 6, 18
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